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In this Supplementary Material, we provide the complete formalism that demonstrates how 

the Purcell effect can improve the scintillation process. We develop the formalism for the 

scintillator’s effective emission rate and efficiency, including the outcoupling of the emitted 

scintillation photon from the structure. In the first part (sections 1-3), we focus on the statistical 

model and generalize it to an arbitrary geometrical configuration. In the second part (sections 4-

5), we show how to calculate the Purcell enhancement for a one-dimensional (1D) Photonic crystal 

(PhC) structure, whether it is infinite or finite. Then, in section S6, we present different parameters 

for describing the advantages of the photonic structure, which can be used to define figures-of-

merits for different applications. 
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S.1 Statistical analysis of a conventional scintillation structure 

In this section, we introduce the statistical model of the scintillation process for a bulk 

scintillation medium. There are three effective parameters that describe the scintillation process: 

the rise time 𝜏𝑟, the bulk decay time 𝜏𝑑,0, and the number of extracted photons for a given radiation 

energy (light yield) 𝑛0. The rise time represents the time it takes from the radiation arrival to the 

beginning of scintillation. The rise time includes the conversion of the radiation into a photoelectric 

electron, the production of electron-hole pairs by this electron, and the thermalization of the pairs 

until reaching recombination in the luminescence centers. Thus, the rise time is usually in the order 

of tens of ps (60 ps for LYSO:Ce). The improvement of the rise time could also be potentially 

achieved with nanophotonics, but it is not the focus of this paper. The decay time describes the 

typical time in which a photon is spontaneously emitted from the luminescence center. The decay 

time is usually in the order of tens of ns or more in inorganic scintillators (40 ns for LYSO:Ce), 

and it can be shorten by changing the optical medium inside the scintillator, as we show here.  

Overall, in order to include both the rise and decay times as independent processes, the 

scintillation-photon emission probability density function 𝑓(𝑡) is calculated as a convolution 

between two exponential distributions, 

𝑓(𝑡) = [
𝑒

−
𝑡
𝜏𝑟Θ(𝑡)

𝜏𝑟
] ∗ [

𝑒
−

𝑡
𝜏𝑑,0Θ(𝑡)

𝜏𝑑,0
] = ∫

𝑒
−

𝑡′

𝜏𝑟Θ(𝑡′)

𝜏𝑟

∞

∞

𝑒
−

(𝑡−𝑡′)
𝜏𝑑,0 Θ(𝑡 − 𝑡′)

𝜏𝑑,0
𝑑𝑡′ =

𝑒
−

𝑡
𝜏𝑑,0 − 𝑒

−
𝑡
𝜏𝑟

𝜏𝑑,0 − 𝜏𝑟
Θ(𝑡), (S1) 

where Θ(𝑡) is the step function starting at the arrival of the energetic radiation. By integrating Eq. 

(S1) over time, we get the cumulative distribution function (CDF) to find the probability that a 

photon arrived at the detector until time 𝑡, 
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𝐹(𝑡) = ∫ 𝑓(𝑡′)𝑑𝑡′
𝑡

0

= [1 −
𝜏𝑑,0𝑒

−
𝑡

𝜏𝑑 − 𝜏𝑟𝑒
−

𝑡
𝜏𝑟

𝜏𝑑,0 − 𝜏𝑟
] Θ(𝑡).                                    (S2) 

This statistical analysis also enables to estimate what is the arrival time correlation of the 

first photon between two detectors, which is important in applications such as time-of-flight PET 

scan. Using a Taylor expantion for small times 𝑡 in Eq. (S2), the CDF goes like time squared, 

𝐹(𝑡) =
𝑡2

2𝜏𝑟(𝜏𝑑,0−𝜏𝑟)
≅

𝑡2

2𝜏𝑟𝜏𝑑,0
. Now, since all emitted photons are independent, the expectation value 

of the number of photons that reach the detector until time 𝑡 is 𝑁𝑡 = 𝑛0
𝑡2

2𝜏𝑟𝜏𝑑,0
. Moreover, the 

probability that 𝑘 photons will arrive until time 𝑡 has a poissonian distributed [1], 𝑃𝑘(𝑡) =

(𝑁𝑡)
𝑘𝑒−𝑁𝑡

(𝑘)!
 . Consequently, the probability that the 𝑘th photon is arriving to the detector exactly 

between 𝑡 and 𝑡 + 𝑑𝑡 is  

𝑊𝑘(𝑡) = 𝑃𝑘−1(𝑡)
𝑑(𝑁𝑡)

𝑑𝑡
=

(𝑁𝑡)
𝑘−1𝑒−𝑁𝑡

(𝑘 − 1)!
⋅
𝑑(𝑁𝑡)

𝑑𝑡
≅

𝑛0𝑡

𝜏𝑟𝜏𝑑

(
𝑛0𝑡2

2𝜏𝑟𝜏𝑑,0
)

𝑘−1

𝑒

−
𝑡2

2𝜏𝑟𝜏𝑑,0
𝑛

(𝑘 − 1)!
Θ(𝑡).           (S3) 

Finally, the resolution in detection of the 𝑘’th photon arrise from the full-width-half-maximum 

(FWHM) of the cross-correlation function, 𝑅𝑘(𝑡) = ∫ 𝑊𝑘(𝜏)𝑊𝑘(𝑡 + 𝜏 )𝑑𝜏
∞

−∞
, between the two 

opposite-directional detectors with similar statistics. Specifically, the FWHM formula for the first 

photon is then 

FWHM(𝑘 = 1) = 4√ln(2) var(𝑊𝑘=1(𝜏)) = 4√ln(2) √
4 − 𝜋

2

𝜏𝑟𝜏𝑑,0

𝑛
.      (S4) 

The analysis shows that this FWHM, called also the coincidence time resolution (CTR), is 

proportional to √
𝜏𝑟𝜏𝑑,0

𝑛
. In Fig. 1c in the main text, we show in purple the cross-correlation function 

𝑅𝑘=1(𝑡) for a LYSO:Ce scintillator, and calculate its CTR according to Eq. (S4).   
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S.2 Statistical analysis of a nanophotonic scintillation structure 

We now generalize the statistical analysis by considering the dependence of the decay time 

on the optical environment (the rise time remians the same). The Purcell factor 𝐹𝑃 alters the bare 

emission rate Γ0(𝜔) (that in conventional scintillators depends only on the emission frequency 𝜔) 

into an effective emission rate, 

Γeff(𝑧, 𝜔, 𝜃) = ∑ Γ0
𝜎(𝜔)𝐹P

𝜎(𝑧, 𝜔, 𝜃)𝑇𝜎(𝑧, 𝜔, 𝜃)

𝜎

,    (S5) 

which depends on the emission direction 𝜃 (relative to the 𝑧 axis), the emission location in space 

𝑧 (in 1D), and 𝜎 ∈ {TE, TM} the light’s polarization. In addition, we introduced the transmission 

coefficient ,𝑇𝜎(𝑧, 𝜃, 𝜔), to count only the photons that were able to escape the scintillator. To take 

into account the spectral distribution of the emission, we next multiply Γeff(𝑧, 𝜔, 𝜃) by the 

normalized distribution function 𝑌(𝜔) of the emitting material, defined so that ∫ 𝑌(𝜔)𝑑𝜔 = 1. 

We determine 𝑌(𝜔) through the emission spectrum of a bulk medium (see section S.3); it can be 

understood as the amount of luminescence with emission frequency 𝜔 compared to the total 

luminescence. Considering all the above, the probability density function (Eq. (S1)) takes the form 

𝑓(𝑡) = (
𝑒

−
𝑡
𝜏𝑟Θ(𝑡)

𝜏𝑟
) ∗ [∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃

𝜋
2

0

∫ 𝑑𝑧𝐺(𝑧)
𝐿

0

Γeff(𝑧, 𝜔, 𝜃)𝑒−Γeff(𝑧,𝜔,𝜃)𝑡Θ(𝑡)] 

= ∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃

𝜋
2

0

∫ 𝐺(𝑧)𝑑𝑧
𝐿

0

𝑒−Γeff(𝑧,𝜔,𝜃)𝑡 − 𝑒
−

𝑡
𝜏𝑟

Γeff
−1(𝑧, 𝜔, 𝜃) − 𝜏𝑟

Θ(𝑡),   (S6) 

where 𝐿 is the length of the whole structure, and 𝐺(𝑧) is the spatial distribution of emitters which 

we take as uniform inside the scintillation materiall and zero in the dielectric, and normalize so 

that ∫ 𝑑𝑧𝐺(𝑧)
𝐿

0
= 1. 
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With the same step as in section S.1, the CDF for the probability that a photon arrived to 

the detector until a time 𝑡 is 

𝐹(𝑡) = ∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃

𝜋
2

0

∫ 𝐺(𝑧)𝑑𝑧
𝐿

0

[
 
 
 

1 −

𝑒−Γeff(𝑧,𝜔,𝜃)𝑡

Γeff(𝑧, 𝜔, 𝜃)
− 𝜏𝑟𝑒

−
𝑡
𝜏𝑟

Γeff
−1(𝑧, 𝜔, 𝜃) − 𝜏𝑟

]
 
 
 

  

≅
𝑡2

2𝜏𝑟
∫ 𝑑𝜔𝑌(𝜔) ∫ 𝐺(𝑧)𝑑𝑧

𝐿

0

∫ sin(𝜃) 𝑑𝜃

𝜋
2

0

Γeff
 (𝑧, 𝜔, 𝜃) ≡

Γeff

2𝜏𝑟
𝑡2.          (S7)     

The approximation in Eq. (S7) is correct only at times where 𝑡 ≪ 𝜏𝑟 , Γeff
−1(𝑧, 𝜔, 𝜃). From Eq. (S7), 

we can connect the decay rate of the structure, 𝜏𝑑, to the average effective emission rate (as in Eq. 

(1) in the main text),  

Γeff =
1

 𝜏𝑑
= ∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃

𝜋
2

0

∫ 𝐺(𝑧)𝑑𝑧
𝐿

0

∑ Γ0
𝜎(𝜔)𝐹P

𝜎(𝑧, 𝜔, 𝜃)𝑇𝜎(𝑧, 𝜔, 𝜃)

𝜎

. (S8) 

Another significant effect that the Purcell effect has on the scintillation properties is 

increasing the total number of detectable photons. Defining the total number of emitted photons 

inside the structure, 𝑁0, to account for the number of electron-hole pairs that recombine radiativly, 

we find the number of detectable photons 𝑛 is 

𝑛 = 𝑁0

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃
𝜋
2

0
∫ 𝐺(𝑧)𝑑𝑧

𝐿

0
∑ Γ0

𝜎(𝜔)𝐹P
𝜎(𝑧, 𝜔, 𝜃)𝑇𝜎(𝑧, 𝜔, 𝜃)𝜎

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃
𝜋
2

0
∫ 𝐺(𝑧)𝑑𝑧

𝐿

0
∑ Γ0

𝜎(𝜔)𝐹P
𝜎(𝑧, 𝜔, 𝜃)𝜎

. 

In a standard scintilator, as described in section S.1, the emission rate is isotropic so that the 

number of emitted photons is 𝑛0 = 𝑁0

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃)𝑑𝜃

𝜋
2

0
∑ Γ0

𝜎(𝜔)𝑇0
𝜎(𝜔,𝜃)𝜎

∫ 𝑑𝜔𝑌(𝜔) ∑ Γ0
𝜎(𝜔)𝜎

, where 𝑇0
𝜎(𝜔, 𝜃) is the 

transmission coefficient to outcouple light from the bulk. Now, we can define also the efficiency 

𝜂 as enhancement of the number of detectable photons (as in Eq. (2) in the main text), 
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𝜂 =
𝑛

𝑛0
=

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃
𝜋
2

0
∫ 𝐺(𝑧)𝑑𝑧

𝐿

0
∑ Γ0

𝜎(𝜔)𝐹P
𝜎(𝑧, 𝜔, 𝜃)𝑇𝜎(𝑧, 𝜔, 𝜃)𝜎

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃
𝜋
2

0
∫ 𝐺(𝑧)𝑑𝑧

𝐿

0
∑ Γ0

𝜎(𝜔)𝐹P
𝜎(𝑧, 𝜔, 𝜃)𝜎

∫ 𝑑𝜔𝑌(𝜔) ∫ sin(𝜃) 𝑑𝜃
𝜋
2

0
∑ Γ0

𝜎(𝜔)√𝜀(𝜔)𝑇0
𝜎(𝑧, 𝜔, 𝜃)𝜎

∫ 𝑑𝜔𝑌(𝜔) ∑ Γ0
𝜎(𝜔)𝜎 √𝜀(𝜔)

 ,     (S9) 

where √𝜀(𝜔) is the scintillator’s refractive index (described through its permittivity 𝜀), which 

equals to the bulk’s Purcell factor [2]. Using Eq. (S7) and (S9), we find that 𝜂𝐹(𝑡) is the number 

of photons that reach the detector before time 𝑡, normalized by 𝑛0, shown in Fig. 1b in the main 

text. 

 As a result of changing the effective emission rate and the efficiency, the CTR can also be 

improved. Since the emitted photons are still independent, the expectation number of photons that 

reach the detector until time 𝑡 for short times, is now 𝑁𝑡 = 𝑛
Γeff

2𝜏𝑟
𝑡2, which is the same expectation 

value as in Section S.1 except of using Γeff instead of 
1

𝜏𝑑
. From here, the rest of the analysis is 

similar to Section S.1 for the probability for the k’th photon detection, as in Eq. (S3), is 𝑊𝑘(𝑡) ≅

2𝑛
Γeff

2𝜏𝑟
𝑡

(𝑛
Γeff
2𝜏𝑟

𝑡2)
𝑘−1

𝑒
−𝑛

Γeff
2𝜏𝑟

𝑡2

(𝑘−1)!
Θ(𝑡), and the CTR is  

FWHM(𝑘 = 1) = 4√ln(2) var(𝑊𝑘=1) = 4√ln(2) √
4 − 𝜋

2

𝜏𝑟

𝜂𝑛0Γeff
. 

Overall, we see that the CTR is now improved by both the effective emission rate and by the 

efficiency, with a total enhancement factor of  √
1

𝜂𝜏𝑑,0Γeff
. According to this result, we will optimize 

our structure to maximize the parameter 𝜂𝜏𝑑,0Γeff . In Fig. 1c in the main text we show the CTR of 

a PhC structure compared to the CTR of a bulk scintillator. 
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S.3 Extraction of the spectral distribution 𝒀(𝝎) and emission rate 𝚪𝟎(𝝎), from the given 

spectra 𝑺(𝝎) and decay time 𝝉𝒅 

When changing the optical structure, we were able to manipulate the emission rate 

enhancement per frequency and angle for each location in space. However, the parameters that are 

known from the literature are the decay time 𝜏𝑑,0 and the emission spectra 𝑆(𝜔), rather than Γ0(𝜔) 

and 𝑌(𝜔). In this section, we show how we convert the parameters from the literature to derive 

the required quantities.  

According to Fermi’s golden rule, the emission rate in homogeneous media is the 

multiplication of the bare emission rate and the material’s refractive index [2], √𝜀(𝜔), so that:  

Γh(𝜔) = Γ0(𝜔)√𝜀(𝜔) =
4𝛼𝜔3|𝝁(𝜔)|2

3𝑐2
√𝜀(𝜔) ,                                          (S10) 

where 𝑐 is the vacuum speed of light, and 𝛼 is the fine-structure constant. In addition, 𝝁(𝜔) is the 

intrinsic dipole moment of the luminescence center, which does not change when altering the 

electromagnetic environment under the conditions of this paper. We find the connection between 

the decay time 𝜏𝑑,0, Γ0(𝜔), and 𝑌(𝜔), by comparing Eq. (S1) and (S6) in a homogeneous medium: 

𝑒
−

𝑡
𝜏𝑑 − 𝑒

−
𝑡
𝜏𝑟

𝜏𝑑 − 𝜏𝑟
= ∫ d𝜔𝑌(𝜔) ∫ sin(𝜃) d𝜃

𝜋
2

0

𝑒− ∑ Γh
𝜎(𝜔)𝑇𝜎(𝜔,𝜃)𝜎 𝑡 − 𝑒

−
𝑡
𝜏𝑟

(∑ Γh
𝜎(𝜔)𝑇𝜎(𝜔, 𝜃)𝜎 )

−1
− 𝜏𝑟

 . 

Thus, similar to section S.2, we can find the connection: 

1

𝜏𝑑,0
= ∫ d𝜔𝑌(𝜔) ∫ sin(𝜃) d𝜃

𝜋
2

0

∑ 𝑇𝜎(𝜔, 𝜃)Γh
𝜎(𝜔)

𝜎

 .                                (S11) 

This connection enables to find Γh(𝜔) and the dipole moment |𝝁(𝜔)|, provided we have 𝑌(𝜔) and 

taking Γh
TE(𝜔) = Γh

TM(𝜔) = Γh(𝜔)/2 . 
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Fortunately, we can find 𝑌(𝜔) by taking the emission spectrum 𝑆(𝜔) of the material from 

the literature. The emission spectrum in some sources relate to the number of photons per second 

that reach the detector per frequency so that, 

𝑆(𝜔) = 𝛽𝑌(𝜔)Γh(𝜔)𝑇0(𝜔) ,  

where 𝛽 =
Γh

Γh+Γnr
 is the ratio between the radiative and overall relaxation rates (including non-

radiative decay), and 𝑇0(𝜔) = ∫ 𝑑𝜃 sin(𝜃) (𝑇0
𝑇𝑀(𝜃, 𝜔) + 𝑇0

𝑇𝐸(𝜃, 𝜔)) is the transmission 

coefficient for outcoupling the emission from the scintillator into free-space. Assuming a constant 

dipole moment for each frequency and 𝛽 = 1, we substitute Eq. (S10) to find the spectral 

distribution, 

𝑌(𝜔) =

𝑆(𝜔)

𝜔3√𝜀(𝜔)𝑇0(𝜔)
 

∫ 𝑑𝜔 [
𝑆(𝜔)

𝜔3√𝜀(𝜔)𝑇0(𝜔)
]

  , (S12) 

normalized so that ∫ d𝜔𝑌(𝜔) = 1. Substituting into Eq. (S11) we can find the dipole moment and 

consequently also the emission rate for each frequency, 

|𝝁|2 ≅
3𝜋𝜖0ℏ𝑐3

𝜏𝑑∫ d𝜔𝑌(𝜔)𝜔3√𝜀(𝜔)𝑇0(𝜔)
. (S13) 

When substituting the dipole moment into Eq. (S10), the emission rate Γ0(𝜔) is found. 
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S.4 Deriving the Purcell factor in a general layered media 

In this section, we review how to calculate the emission rate and the Purcell factor in any 

layered medium. In a general structure, the emission rate of a local dipole 𝝁 = 𝑒⟨i|𝒓|f⟩ where |i⟩, |f⟩ 

are the initial and final state, is calculated through [2]: 

Γdipole approx. =
2ω

𝜖0ℏc2
Im[𝑮𝝁̂𝝁̂(𝒓𝟎, 𝒓𝟎; 𝜔)]|𝝁|2 ,                                      (S14) 

where 𝒓𝟎 is the location of the dipole, 𝜖0 is the vacuum permittivity, and ℏ is the reduced Planck’s 

constant. In addition, 𝑮𝑖𝑗(𝒓, 𝒓′; 𝜔) is the dyadic Green’s function which describes the 

𝑖𝑡ℎcomponent of the electric field in location 𝒓 as a result of a dipole excitation in 𝒓′ oriented along 

𝑗. This Green’s function captures the electromagnetic response of the entire structure (including 

its optical environment). In our structure, we can assume the dipole approximation for the 

scintillation emitters (luminescence centers), so that the emission is captured by  

Im[𝑮𝝁̂𝝁̂(𝒓𝟎, 𝒓𝟎; 𝜔)], which is proportional to the local density of photonic states (LDOS) of the 

dipole emission at point 𝒓𝟎 and orientation 𝝁̂. Thus in this work, the emission rate, the Purcell 

factor, and the LDOS are all proportional to one another and are manipulated through our photonic 

design. 

The structures that we analyze are finite or infinite 1D photonic crystals which are specific 

cases of a multi-layer structure. In such structure, the reflection from each one of the layers causes 

a constructive or destructive interference for each frequency and propagation angle so that the 

LDOS varies strongly between different photonic modes. Because of the translational symmetry 

in the system, the dyadic Green’s function is expressed by a mode expansion according to the in-

plane momentum 𝒒 = (𝑞𝑥 , 𝑞𝑦) [3, 4]: 
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𝑮⃡  (𝒓, 𝒓, 𝜔) =
𝑖

8𝜋2
∫ 𝑑𝒒

1

𝜀𝑚𝑞2𝑘𝑚,𝑧
[𝐺∥ 

𝑇𝑀(𝑞, 𝑧)𝒒̂𝒒̂ + 𝐺⊥
𝑇𝑀(𝑞, 𝑧)𝒛̂𝒛̂ + 𝒒̂𝒒̂𝐺∥

𝑇𝐸(𝒒, 𝑧)] . (S15) 

𝑘𝑚,𝑧 = √𝜀𝑚𝜔2/𝑐2 − 𝑞2 is the wave vector in the 𝑧̂ direction with 𝜀𝑚 as the permittivity of the 

material in the 𝑚th layer.  In Eq. (S15), 𝐺⊥,∥
𝜎  represents the spectral response for the polarizations 

𝜎 and dipole excitation in the perpendicular (⊥) or parallel (∥) directions, calculated through  

𝐺∥
𝜎(𝑧, 𝜔, 𝑞) =

[𝑒−𝑖𝑘𝑚,𝑧𝑧 + 𝑒𝑖𝑘𝑚,𝑧(𝑧+2𝑑𝑚)𝑅̃𝑚,𝑚+1
𝜎 ][𝑒𝑖𝑘𝑚,𝑧𝑧 + 𝑒−𝑖𝑘𝑚,𝑧(𝑧+2𝑑𝑚−1)𝑅̃𝑚,𝑚−1

𝜎 ]

1 − 𝑅̃𝑚,𝑚+1
𝜎 𝑅̃𝑚,𝑚−1

𝜎 𝑒2𝑖𝑘1,𝑧(𝑑𝑚−𝑑𝑚−1)
,        (S16a) 

𝐺⊥
𝑇𝑀(𝑧, 𝜔, 𝑞) =

[𝑒−𝑖𝑘𝑚,𝑧𝑧 − 𝑒𝑖𝑘𝑚,𝑧(𝑧+2𝑑𝑚)𝑅̃𝑚,𝑚+1
𝑇𝑀 ][𝑒𝑖𝑘𝑚,𝑧𝑧 − 𝑒−𝑖𝑘𝑚,𝑧(𝑧+2𝑑𝑚−1)𝑅̃𝑚,𝑚−1

𝑇𝑀 ]

1 − 𝑅̃𝑚,𝑚+1
𝑇𝑀 𝑅̃𝑚,𝑚−1

𝑇𝑀 𝑒2𝑖𝑘1,𝑧(𝑑𝑚−𝑑𝑚−1)
,     (S16b) 

where −𝑑𝑚 is the location of the interface between the 𝑚th and the (𝑚 + 1)th layers. In this 

configuration, 𝑧 = 0 is the location of the last interface (i.e., the whole structure is in 𝑧 < 0), and 

the outcoupled emitted light is propagating towards the positive z axis. 𝑅̃𝑚,𝑚+1
𝜎  are the global 

reflection coefficients from the whole optical structure at each interface, calculated in a recursive 

manner according to the reflection from the next interface [3],  

𝑅̃𝑚,𝑚+1
𝜎 =

𝑟𝑚,𝑚+1
𝜎 + 𝑅̃𝑚+1,𝑚+2

𝜎 𝑒2𝑖𝑘𝑚+1,𝑧(𝑑𝑚+1−𝑑𝑚)

1+𝑟𝑚,𝑚+1
𝜎 𝑅̃𝑚+1,𝑚+2

𝜎 𝑒2𝑖𝑘𝑚+1,𝑧(𝑑𝑚+1−𝑑𝑚)
,                                    (S17) 

where 𝑟12
𝑇𝐸 =

𝑘1𝑧−𝑘2𝑧

𝑘1𝑧+𝑘2𝑧
, 𝑟12

𝑇𝑀 =
𝜖1𝑘2𝑧−𝜖2𝑘1𝑧

𝜖2𝑘1𝑧+𝜖1𝑘2𝑧
 are the Fresnel coefficients. Note that the last interface of 

the structure satisfies 𝑅̃𝑚+1,𝑚+2
𝜎 = 0, so that 𝑅̃𝑚,𝑚+1

𝜎 = 𝑟𝑚,𝑚+1
𝜎  (the conventional Fresnel 

coefficient). Eq. (S17) is in fact equivalent to the common transfer matrix equations so that with 

any given boundary conditions, the effective reflection coefficient from each interface can be 

derived. Moreover, since these coefficients relate to the reflection from the entire structure, the 

transmission into the external material for each layer and polarization is calculated by  
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𝑇𝑚
𝜎(𝜔, 𝑞) = 1 − |𝑅̃𝑚,𝑚−1

𝜎 (𝜔, 𝑞)|
2
. 

In Fig. S1, we present an example of the spectral response near the edge of a photonic crystal. We 

see the typical differences between 𝐺∥
 (𝑧, 𝜆 =

2𝜋𝑐

𝜔
, 𝜃 = 0) and 𝐺⊥

𝑇𝑀(𝑧, 𝜆 =
2𝜋𝑐

𝜔
, 𝜃 = 0), with one 

getting a maximal value at the center of the layer at the same positions for which the other gets a 

minimal value. This plot shows that for our specific structure and wavelengths of emission, a 

dipole oriented in the x-y plane would maximize its perpendicular emission when located at the 

edges of the layer.  

 

Figure S1: The typical spectral response near the edge of a Photonic crystal. The real part of 

(a) 𝐺⊥ (𝑧, 𝜆 =
2𝜋𝑐

𝜔
, 𝜃 = sin−1 (

𝑞𝑐

𝜔
) = 0) and (b) 𝐺⊥(𝑧, 𝜆, 𝜃 = 0) vs. distance from the interface 

and emission wavelength, in the first 10 periods of a LYSO\air PhC. The dark vertical stripes 

correspond to the layers that do not have luminescence centers (no scintillation). The colored 

stripes show that the PhC features, including the photonic bandgap, are formed within a few layers 

from the interface. From the plot we notice that 𝐺⊥ has a maximum in the center of each 

scintillation layer, while 𝐺|| has a minimal value at the same points, for the specific band of interest. 

We note that for different bands, or with different refractive indices of the materials, the typical 

shapes of 𝐺⊥ and 𝐺|| can alternate. 

To find the Purcell enhancement, we can use the expression in Eq. (S15), though our 

structure enables to further simplify the expression when investigating emission only into modes 

that are propagating in media 𝑚. In such a case, we may substitute 𝒒̂ = cos𝜙𝑥̂ + sin𝜙𝑦̂ and 

integrate over the in-plane angle 𝜙, in addition to a change of variables 𝑞 = 𝑘𝑚 sin 𝜃 , 𝑘𝑚,𝑧 =

𝑘𝑚 cos 𝜃, so that the expression for the Green’s function becomes: 
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Im𝐆(𝒓, 𝒓; 𝜔) = 𝑘𝑚 ∫ 𝑑𝜃

𝜋
2

0

sin 𝜃

8𝜋
[(

1 0 0
0 1 0
0 0 0

) (cos2 𝜃 Re{𝐺∥ 
𝑇𝑀} + Re{𝐺∥

𝑇𝐸})

+ (
0 0 0
0 0 0
0 0 1

) 2 sin2 𝜃 Re{𝐺⊥ 
𝑇𝑀}]. 

We note that a precise expression includes an integral over 𝑞 until infinity instead of 𝜃. 

In order to get the enhancement for a randomly oriented dipole, we use the identity that the 

average over all directions equals one third of the Green’s function trace. The total emission rate 

enhancement, denoted by the Purcell factor 𝐹p, is: 

𝐹p =
1

3

6𝜋

𝑘0
[Im{Tr[𝐆 (𝒓, 𝒓; 𝜔0)]}] = √𝜀(𝜔) ∫ 𝑑𝜃 sin 𝜃

𝜋
2

0

cos2 𝜃 Re{𝐺∥ 
𝑇𝑀} + sin2 𝜃 Re{𝐺⊥

𝑇𝑀} + Re{𝐺∥
𝑇𝐸}

2
. (S18) 

Notice that Eq. (18) is consistent with a Purcell factor of √𝜀(𝜔) for a bulk material (when 𝐺⊥,∥
𝜎 =

1) for any homogeneous media. From Eq. (S18), the expression for the spectral and angular Purcell 

factor in a specific location is  

𝐹𝑃
 (𝑧, 𝜔, 𝜃) = √𝜀(𝜔)

cos2 𝜃 Re{𝐺∥ 
𝑇𝑀} + sin2 𝜃 Re{𝐺⊥ 

𝑇𝑀} + Re{𝐺∥
𝑇𝐸}

2
 . (S19) 

The expression in Eq. (S19) is exactly the factor that needs to be substituted in Eq. (S5) in order 

to find the enhanced scintillation parameters in Section S.2, with emission rates for each 

polarization Γ0
𝜎 =

Γ0

2
, and Purcell factors of 𝐹𝑃

𝑇𝑀 (𝑧, 𝜔, 𝜃) = cos2 𝜃 Re{𝐺∥ 
𝑇𝑀} + sin2 𝜃 Re{𝐺⊥ 

𝑇𝑀}, 

and 𝐹𝑃
𝑇𝐸(𝑧, 𝜔, 𝜃) = Re{𝐺∥

𝑇𝐸}. Noticeably, a more general derivation, which we use in the main 

text, includes the representation of the integrals in Eqs. (S18-S19) with the in-plane momenta 𝒒 

instead of the emission angle (denoted as 𝑘𝑥 in Fig. 2a), since the in-plane momenta is not limited. 

We also note that the methodology above needs to assume slight losses for predicting the emission 

rate above the critical angle of the layers near the edge. In Figure S.2, we present the Purcell factor 

near the edge of a finite photonic crystal, when fixing each parameter in the problem. 
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Figure S2: The Purcell factor 𝑭𝑷
 (𝒛, 𝝀, 𝜽), presented through cross-section plots. (a) The 

Purcell factor for perpendicular emission, 𝐹𝑃
 (𝑧, 𝜆, 𝜃 = 0). In this plot we see similar features as in 

Fig. (S1b) since only 𝐺∥
  contributes to the emission. (b) The Purcell factor for a specific 

wavelength, 𝐹𝑃
 (𝑧, 𝜆 = 600 nm, 𝜃). In (a) and (b) the dark vertical stripes correspond to the layers 

that do not have luminescence centers (no scintillation). (c) The Purcell factor in a specific location 

in space, 𝐹𝑃
 (𝑧 = 4𝐷 +

𝑑1

3
, 𝜆, 𝜃), where 𝐷 and 𝑑1 are the period and LYSO layer length 

respectively. In this plot, the photonic crystal features are clearly seen, though having a finite 

number of periods creates a fringe-like pattern. In all plots, the luminescence centers are assumed 

homogeneous and with random dipole orientations. 

In the main text, we present the results for a scintillator in which the dipoles of the 

luminescence centers are oriented in a fixed direction (Fig. 2c), showing that finding such a design 

would enhance the scintillation process. If the dipoles are oriented in a fixed direction inside the 

scintillator (denoted by the 𝝁̂ direction), the Purcell factor gets the form 𝐹p =

6𝜋

𝑘𝑚
[Im{𝐆𝝁̂𝝁̂(𝒓, 𝒓; 𝜔0)}]. Specifically, for a dipole oriented in angle 𝜃𝝁̂ (relative to the z axis), the 

dipole orientation is 𝝁̂ = sin(𝜃𝝁̂) 𝒙̂ + cos(𝜃𝝁̂) 𝒛̂, leading to a Purcell factor: 

𝐹𝑃,𝜃𝝁̂

 (𝑧, 𝜔, 𝜃) =
3

4
[sin2(𝜃𝝁̂) (cos2 𝜃 Re{𝐺∥ 

𝑇𝑀} + Re{𝐺∥
𝑇𝐸}) + 2 cos2(𝜃𝝁̂) sin2 𝜃 Re{𝐺⊥ 

𝑇𝑀}] . 

In this case, the Purcell factors per polarizations are 𝐹𝑃,𝜃𝝁̂

𝑇𝑀 (𝑧, 𝜔, 𝜃) =
3

2
sin2(𝜃𝝁̂) cos2 𝜃 Re{𝐺∥ 

𝑇𝑀} +

3 cos2(𝜃𝝁̂) sin2 𝜃 Re{𝐺⊥ 
𝑇𝑀}, and 𝐹𝑃,𝜃𝝁̂

𝑇𝐸 (𝑧, 𝜔, 𝜃) =
3

2
sin2(𝜃𝝁̂) Re{𝐺∥

𝑇𝐸}. 

400

500

300

600

0.1 0.2 0.3 0.4

700

0.5

Em
is

si
o

n
 w

av
el

en
gt

h
 [

n
m

]

Emission angle [rad]

1 3 75

Em
is

si
o

n
 w

av
el

en
gt

h
 [

n
m

]

Distance from interface [ ]
1 21.50.5 2.5

400

500

300

600

700

1 3 42

Distance from interface [ ]
1 21.50.5 2.5

Em
is

si
o

n
 a

n
gl

e 
[r

ad
]

0.4

0.3

0.5

0.2

0.1

Photonic bandgap

1 3 42



15 
 

S.5 Deriving the Purcell factor for an infinite photonic crystal 

In this section, we exploit the symmetry of an infinitely periodic structure to find the 

reflection coefficients and derive the Purcell factor. In such structure, the reflection coefficients 

are also periodic, leading to 𝑅̃𝑚,𝑚+1
𝜎 = 𝑅̃𝑚,𝑚−1

𝜎 = 𝑅̃𝑚+2,𝑚+3
𝜎 . By looking at specific layers 𝑚 =

1,2 with width 𝑑1,2, we find 

𝑅̃1,2 =
𝑟1,2 + 𝑅̃2,1𝑒2𝑖𝑘2,𝑧𝑑2

1 + 𝑟1,2𝑅̃2,1𝑒2𝑖𝑘2,𝑧𝑑2
, 𝑅̃2,3 = 𝑅̃2,1 =

𝑟2,1 + 𝑅̃1,2𝑒2𝑖𝑘1,𝑧𝑑1

1 + 𝑟2,1𝑅̃1,2𝑒2𝑖𝑘1,𝑧𝑑1
,  

leading to a quadratic equation for 𝑅̃1,2:  

𝑅̃1,2
2 𝑟12𝑒2𝑖𝑘1,𝑧𝑤1(𝑒2𝑖𝑘2,𝑧𝑑2 − 1) + 𝑅̃1,2(1 − 𝑟12

2 (𝑒2𝑖𝑘2,𝑧𝑑2 + 𝑒2𝑖𝑘1,𝑧𝑑1) − 𝑒2𝑖(𝑘1,𝑧𝑑1+𝑘2,𝑧𝑑2))

+ 𝑟12(𝑒2𝑖𝑘2,𝑧𝑑2 − 1) = 0. 

Although the equation results in two possible solutions, we choose only the single solution which 

satisfies |𝑅̃1,2|
2

≤ 1. After finding 𝑅̃1,2
𝜎 (𝜔, 𝑞) for each polarization, wavevector, and frequency, 

we can substitute it back in the expression for 𝐺⊥,∥
𝜎  in Eq. (S16). So that for the 𝑚th layer these 

functions reduce to: 

𝐺∥
𝜎(𝑧, 𝑞, 𝜔) =

1 + 2𝑅̃𝑚,𝑚+1
𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚 cos(2𝑘𝑚,𝑧𝑧) + (𝑅̃𝑚,𝑚+1

𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚)
2

1 − (𝑅̃𝑚,𝑚+1
𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚)

2 ,                             (S20a) 

𝐺⊥
𝑇𝑀(𝑧, 𝑞, 𝜔) =

1 − 2𝑅̃𝑚,𝑚+1
𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚 cos(2𝑘𝑚,𝑧𝑧) + (𝑅̃𝑚,𝑚+1

𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚)
2

1 − (𝑅̃𝑚,𝑚+1
𝜎 𝑒𝑖𝑘𝑚,𝑧𝑑𝑚)

2  ,                         (S20b) 

which are plotted in Fig. S3. Notice that the only dependence on 𝑧 is through 𝑅̃𝑚,𝑚+1
𝜎 cos(2𝑘1,𝑧𝑧), 

enabling to calculate the average of the Purcell factor over space analytically.  
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Figure S3: The typical spectral response for an infinite Photonic crystal. The real part of (a) 

𝐺𝑇𝐸 (𝑧, 𝜆, 𝜃 =
𝜋

8
), (b) 𝐺⊥

𝑇𝑀 (𝑧, 𝜆, 𝜃 =
𝜋

8
) and (c) 𝐺∥

𝑇𝑀 (𝑧, 𝜆, 𝜃 =
𝜋

8
) vs. the distance from the center 

of the LYSO layer and the emission wavelength, in a LYSO\air PhC. We see that 𝐺⊥ has a 

maximum in the center of the LYSO layer, while 𝐺|| has a minimum in that point, for the main 

photonic band of interest (as oppose to the higher band that has an opposite behavior). Since the 

angle of emission is not zero, the energies of the photonic bandgap are polarization-dependent (TE 

or TM).  
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S.6 The photonic structure’s partial emission properties 

 In the previous sections, we derived both the integrated expressions such as 𝜂 and Γeff that 

describe the structure as a whole, and the local expressions such as 𝐹𝑃
𝜎(𝑧, 𝜔, 𝜃). In this section, we 

derive expressions that focus on specific emission properties, as the angular or spectral emission. 

With these expressions, our optimization approach can be used to maximize different emission 

figure-of-merits according to the required application. The Purcell factor 𝐹𝑃
σ is normalized to the 

emission rate in vacuum. However, it is valuable to also define the emission rate enhancement 

relative to the bulk emission rate 𝐹𝑃,b
σ , and the emission rate enhancement into detectable photons, 

relative to the equivalent in a bulk, 𝐹𝑃,det
σ . 

 We define the Purcell factor averaged over space in the following way: 

𝐹𝑃
σ(𝜔, 𝜃) = ∫ dz𝐺(𝑧)𝑃𝐹

σ(z, ω, θ),   𝐹𝑃,b
σ (𝜔, 𝜃) =

∫ dz𝐺(𝑧)𝐹𝑃
σ(z, ω, θ)

√𝜀(𝜔)
,  

 𝐹𝑃,det
σ (𝜔, 𝜃) =

∫ dz𝐺(𝑧)𝐹𝑃
σ(z, ω, θ) 𝑇σ(z, ω, 𝜃)

√𝜀(𝜔)𝑇0
𝜎(𝜔, 𝜃)

.  (S21a, b, c) 

We note that Eq. (S21b) is plotted in Fig. 2a in the main text for each of the two polarizations. By 

integrating Eqs. (S21) over frequency (weighted by the spectrum of the scintillator’s luminescence 

centers), we find the angular Purcell factors 

𝑃𝐹
σ(𝜃) = ∫ d𝜔∫ dz𝐺(𝑧)𝑌(𝜔)𝐹𝑃

σ(z, ω, θ), 𝐹𝑃,b
σ (𝜃) =

∫ d𝜔∫ dz𝐺(𝑧)𝑌(𝜔)𝐹𝑃
σ(z, ω, θ)

∫ d𝜔𝑌(𝜔)√𝜀(𝜔)
,  

𝐹𝑃,det
σ (𝜃) =

∫ d𝜔𝑌(𝜔)∫ dz𝐺(𝑧)𝐹𝑃
σ(z, ω, θ) 𝑇σ(z, ω, 𝜃)

∫ d𝜔𝑌(𝜔)𝑇0
𝜎(𝜔, 𝜃)√𝜀(𝜔)

. (S22a, b, c) 

The plot of Eq. (S22b) can be found in the turquoise plot in Fig. 2b, while the blue plot in the same 

figure is derived from 
∫ d𝜔∫ dz𝐺(𝑧)𝑌(𝜔)𝐹𝑃

σ(z,ω,θ)𝑇σ(z,ω,𝜃)

∫ d𝜔𝑌(𝜔)√𝜀(𝜔)
 so that the ratio between the two plot areas 



18 
 

presents the percentage of the emitted light that can couple out of the structure. In Fig. S4, we 

present similar quantities for structures that were optimized for emission at a particular angle, 

specifically maximizing 𝑃𝐹,b
σ (𝜃 = 0) (blue), and 

𝐹𝑃,det
σ (𝜃=𝜋/3)

𝐹𝑃,det
σ (𝜃=0)

 (pink). In the expression for the pink 

simulation, the emission directionality is separated from the efficiency. This separation provides 

an example of the role of each part in the total enhancement that was the focus of the paper, both 

the enhancement of the emission rate and the focusing of the angular spread. 

 

Figure S4: Control over the emission direction. The total emission rate from the PhC (turquoise 

and light pink) and the outcoupled part (blue and deep pink), normalized by the bulk emission rate. 

The blue (pink) plot describes an emission of the structure that maximizes the zero-angle (high 

angle) emission rate. The ratio between the blue and turquoise (and deep to light pink) plots show 

that the overall efficiency of these structures is smaller compared to Fig. 2b because they were 

optimized for specific angles instead of the total emission. This way we get that the deep pink plot 

presents a highly directional emission, but with a small effective emission rate. 

Finally, using a weighted angular integral over Eqs. (S21), we reach the Purcell factors 

as a function of frequency 

𝐹𝑃
σ(𝜔) = ∫ sin(𝜃) d𝜃

𝜋
2

0

∫ dz𝐺(𝑧)𝐹𝑃
σ(z, ω, θ) ; 𝐹𝑃,b

σ (𝜔) =
1

√𝜀(𝜔)
∫ sin(𝜃) d𝜃

𝜋
2

0

∫ dz𝐺(𝑧)𝐹𝑃
σ(z, ω, θ) 

𝐹𝑃,det
σ (𝜔) =

∫ sin(𝜃) d𝜃
𝜋
2

0
∫ dz𝐺(𝑧)𝐹𝑃

σ(z, ω, θ) 𝑇σ(z, θ, ω)

∫ sin(𝜃) d𝜃
𝜋
2

0
𝑇0

σ(𝜃, 𝜔)√𝜀(𝜔)
. (S23a, b) 

Overall, we presented in this section several possible expressions that can be used as a figure-of-

merit for optimizing the photonic structure. 

 

Maximize 
high angles

Maximize 
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Figure S5: The control over the efficiency 𝜂 and effective emission rate Γeff by manipulating the 

spectral bandwidth of the emitters. The emitter spectral distribution 𝑌(𝜔) was modeled as a 

gaussian in frequency. The other parameters in the problem, such as each the layers’ widths, 

remained the same as the optimized LYSO\air PhC with the original spectral distribution (similar 

to Fig. 2). Unsurprisingly, the results show an improvement in all optimization parameters when 

reducing the bandwidth, but since the quality factor of the optical structure is small, this 

improvement is accordingly not significant.  
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Table S1: Simulation parameters. The table concentrates the parameters used in each plot in the 

manuscript and SM. The refractive indices of the scintillator layers, the other dielectric layers, and 

the surrounding material, are denoted by 𝑛1,𝑛2, and 𝑛ext respectively. 𝑑1,2 denote the width of the 

scintillator layer and of the dielectric layer respectively. In each figure that include an optimization 

simulation, we denote the figure-of-merit that was used to determine 𝑑1 and 𝑑2. 

Plot 𝒏𝟏 𝒏𝟐 𝒏𝐞𝐱𝐭 optimization 

parameter 
𝒅𝟏 [nm] 𝒅𝟐 [nm] 

Fig. 1− blue curves 

Figs. 2, S1, S2, S3 

1.81 1 1 𝜂Γeff 130 150 

Fig. 1a − red curves 

 

2.3 1.5 1.5 𝜂Γeff 130 130 

Fig. 3a 

Fig. S5 

1.81 1 1 - 130 150 

Fig. S4 − blue curves 1.81 1 1 𝑃𝐹
 (𝜃 = 0) 85 41 

Fig. S4 − pink curves 1.81 1 1 𝑃𝐹,det
σ (𝜃 = 𝜋/3)

𝑃𝐹,det
σ (𝜃 = 0)

 
41 85 

Fig. 3b 1.81 1 1 - 130± rand(x) 150 
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